It’s not an embedded Linux distribution —
O o ’ It creates a custom one for you.

PROIJECT

Developing Embedded Linux Devices Using the Yocto Project™

David Stewart
Intel Corporation
October, 2011

yocto - [liinux

PROJECT

« What Is the Yocto Project (YP)? ... and
what's new

« How does it work?

« How to get started with building OS,
apps, and debugging

o What's Next?

° Q&A yocto - rIiinux 2/25

OOOOOOOOOO
PPPPPPP

What Is the Yocto Project? The Story

Linux is becoming increasingly popular for Embedded

Non-commercial and commercial embedded Linux has many distros

Result is:

« Developers spend lots of time porting or making build systems
« Leaves less time/money to develop interesting software features

The industry needs a common build system and core technology
Industry leaders have joined together to form the Yocto Project

The benefit of doing so is:

« Less time spent on things which don’t add value (build system, core Linux
components)

« Linux grows more in embedded

OOOOOOOOOO
PPPPPPP

What is the Yocto Project?

 Distribution build environment and tools for embedded
« Supports ARM, PPC, MIPS, x86 (32 & 64 bit)
* Open source project with a strong community

 Content

Complete Linux OS with package metadata

Releases every 6 months with latest (but stable) kernel,
toolchain, and package versions

Place for Industry to publish BSPs

App Dev Tools which allow development against the stack,
Including Eclipse plug-ins and emulators

Full documentation representative of a consistent system

It's not an embedded Linux distribution — it creates a custom one for you

YOCTO - []LiNux

OOOOOOOOOO
PPPPPPP

Why Should a Developer Care?

Build a complete Linux system in about an hour from sources
(about 90 minutes with X).

Start with a validated collection of packages (toolchain, kernel,
user space).

Access to a great collection of app developer tools
(performance, debug, power analysis, Eclipse). We distinguish
app developers system developers and we support both.

Manage patches with included kernel development tools.

Supports all major embedded architectures (x86, x86-64, ARM,
PPC, MIPS), just change a line in a config file and rebuild.

Easy path to a commercial embedded Linux (Mentor Graphics,
Montavista, Timesys, Wind River).

NNNNNNN
OOOOOOOOOO

What's new in Yocto v1.1

 Hob — graphical interface for selecting options
and packages and doing a build

« Multilib —
 mix and match 32 and 64 bit binaries on the target

* Pick the architecture on a per package basis
* https://wiki.yoctoproject.org/wiki/Multilib for more

 |nitial x32 support —

« X86-64 systems running 64 bit registers and 32 bit
data types — see meta-x32 repository

« System builder tasks now in Eclipse

OOOOOOOOOO
PPPPPPP

https://wiki.yoctoproject.org/wiki/Multilib
https://wiki.yoctoproject.org/wiki/Multilib

How Does It Work? — Quick Start

. Go to http://yoctoproject.org, click “documentation”
and consult the Quick Start guide

. Set up your Linux system with the right packages (and
firewall access, If needed)

. Click “Download” and download the latest stable
release (or check out “bernard” from the git repo)

. Edit conf/local.conf and set MACHINE,
BB NUMBER THREADS and PARALLEL MAKE

5. Source oce-init-build-env Script

6. Run $ bitbake -k core-image-sato

/. Run $ rungemu gemux86 (if MACHINE=gqemux86)

Note: File or command names in this presentation are t
subject to change, several are different now in master. YOCLO - [Jtinux

PPPPPPP

http://yoctoproject.org/

YP = Poky + Upstreams + Tools

OpenEmbedded-Core

S— Build system upstream

components
b4 Poky
Reference Images
Upstream Fﬂeeftzzjearlge(ﬁfpzr et Prebuilt Build State Yocto Project
components

. Software Releases
Projects

ADT Components

b Yocto Project

N Yocto Project Output

Software—> e ——

YP provides best of upstream for a stable base
yocto - rliinux

PROJECT

How Does It Work? More Depth

Upstream Openembedded Architecture Workflow
Project chal S;MS
Projects (optional) Upstream Source Output Packages
Releases Metadata/Inputs Process steps (tasks)
Build system . Output Image Data

Source Mirror(s)

User

Configuration Package Feeds

Source
Fetching

Metadata Generation

(.bb + patches)

Output
Analysis for

package
plitting plus
package
elationships

Patch
Application

Image SDK
Generation Generation

Machine (BSP)
Configuration

Generation

Policy
Configuration

onfiguratio
/ Compile / Aoalicat

Generation pplication
Auturec;n; Images Development
as neede L

’ Look here for links to slides and video tutorials!

More info: http://bit.ly/it9rkB yocto - rLinux

« Configuration (*.conf) — global definition
of variables

How Does it Work? Configuration

User
Configuration

Metadata
(.bb + patches

Machine (BSP)

Configuration

Policy

Configuration

build/conf/local.conf (local user-defined variables)

distro/poky.conf (Yocto policy config variables)

machine/routerstationpro.conf (machine-specific
variables)

OOOOOOOOOO
PPPPPPP

How Does It Work? Configuration

User
Configuration

Metadata
(.bb + patches

Machine (BSP)
Configuration

« User configuration:
» conf/local.conf — some things to set:

Policy
Configuration

« Set BB NUMBER_ THREADS and PARALLEL MAKE,
based on the number of threads in the machine

« Set MACHINE="*foo” for the CPU architecture

« EXTRA IMAGE_FEATURES adds features (groups of
packages)

« INCOMPATIBLE_LICENSE = “GPLv3” eliminates
packages using this license (for example)

NNNNNNN
OOOOOOOOOO

Upstream — mbedded Architecture Workflow
- (optional) e Output Packages
Releases Process steps (tasks)
M output Image Data
u

 Metadata and patches:
Recipes for building packages

Openes

User
Configuration

Metadata
(.bb + patches)

Machine (BSP)
Configuration

Policy
Configuration

EQ, meta/recipes-
core/coreutils/coreutils 6.9.bb builds the core
utilities (version 6.9) and installs them

meta-recipes-core/coreutils/coreutils-6.9/
Includes patches, also could include extra files to
Install

NNNNNNN
OOOOOOOOOO

How Does It Work? Layers

User
Configuration

Metadata
(.bb + patches)

Machine (BSP)
Configuration

[Developer-Specific Layer] Policy

Configuration

[Commercial Layer (from OSV)]

[Ul-Specific Layer]

Hardware-Specific BSP h

Yocto-Specific Layer Metadata (meta-vocto)]

[OpenEmbedded Core Metadata (ce-core)]

yocto - [ltinux

PROJECT

BSP “Layers”

« Layers contain extensions and customizations to base system

Can include image customizations, additional recipes,
modifying recipes, adding extra configuration

« Really just another directory to look for recipes in
« Added to the BBLAYERS variable in build/conf/bblayers.conf

« BSPs are layers that add machine settings and recipes

 Machine settings are specified in a layer's
conf/machine/xxx.conf file(s)

 Examples:
« Sandy Bridge + Cougar Point:

« meta-intel/conf/meta-sugarbay/machine/sugarbay.conf
* Routerstation Pro (MIPS)

« yocto/meta/conf/machine/routerstationpro.conf

More info: bit.ly/IWaszt & bit.ly/m8nirP yocto - rLinux

PROJECT

Kernel Development

* We try to develop upstream wherever possible

* Two major advances in the Yocto Project:

* Branching tools: Per-BSP git branches contain
machine-specific kernel sources. Tools collect up
the relevant tree of branches

« Kernel features: patches and configuration
fragments managed as a functional block

 Results:

« Can turn on a collection of features for a given BSP
* Less code duplication

« Easlier to choose a config fragment and patches
More info: bit.ly/iZUkvk & bit.ly/jRSfwO yocto - [JIiinux

OOOOOOOOOO
PPPPPPP

Kernel Tools Detalls

« Components

» Kernel class
* meta/classes/kernel.bbclass
« Linux-Yocto recipe
« meta/recipes-kernel/linux/linux-yocto*bb
* Linux-Yocto git repository
« http://git.pokylinux.org/cgit/cgit.cgi/linux-yocto-2.6.37
« Kernel Versions

* linux-yocto-stable: 2.6.34

* linux-yocto: 2.6.37

« linux-yocto-dev: 2.6.39 (meta-kernel-dev) (soon 3.0)
« linux-2.6: current mainline git (meta-kernel-dev)

OOOOOOOOOO
PPPPPPP

Source Fetching

Upstream
P . Local
Project :
Projects
Releases

Source Mirror(s)

SCMs
(optional)

Source

Fetching

« Recipes call out location of all sources, whether on the internet
or local (Look for SRC_URI in *.bb files)

« Bitbake can get sources from git, svn, bzr, from tarballs, and
many, many more*

« Versions of packages can be fixed or updated automatically
(Add SRCREV_pn- PN ="${AUTOREV}” to local.conf)

* Yocto Project sources mirror available as a fallback, if the
sources move on the internet

* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc, . 1
repo, ssh, and svk and the unpacker can cope with tarballs, zip, rar, xz, gz, bz2, y gg!lc(? n %!ngé

and so on.

Patching

Metadata
(.bb + patches) . 4

Patch
Application

Once sources are obtained, the patches are applied
This i1s a good place place to patch the software yourself

However, we encourage you to contribute development
upstream whenever possible (we try to)

yocto - [ltinux

PROJECT

Configure/Compile

[SCMs
Projects (optional) Upstream Source Output Packages
Metadata/inputs Process steps (tasks)
Build system W output image Data

onfiguratio
/ Compile /

Autoreconf
as needed

Autoconf can be triggered automatically to ensure latest libtool is used

|||||

DESCRIPTION = "GNU Helloworld application™
SECTION = "examples"
LICENSE = "GPLv2+"

LIC FILES CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
PR = "rQ"

SRC_URI = "S${GNU MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

CFLAGS can be set

CFLAGS prepend = "-I ${S}/include "
Install task to set modes, permissions, target directories, done by “pseudo”
do install () {

oe runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=S${mandir}

yocto - [ltinux

PROJECT

Packaging

.rpm
Generation

Qutput
Analysis for

package
splitl:ir‘lg o Ger;:f:tinn
. . . . package
« Once configure/compile/install is completed, Irelationships

packaging commences

ipk
Generation

B
« The most popular package formats are

supported: RPM, Debian, and ipk

 Set PACKAGE CLASSES inconf/local.conf

* You can split into multiple packages using
PACKAGES and FILES in a *.bb file:

PACKAGES =+ "sxpm cxpm"
FILES cxpm = "${bindir}/cxpm"
FILES sxpm = "${bindir}/sxpm"

yocto - [ltinux

PROJECT

I E |
e i iililillihihkh——
Upstream SCMs Openembedded Architecture Workflow
e (optional) Upsiream Source Output Packages
Sl Metadata/inp: Process steps (tasks)
Build system output Image Data

Package Feeds

Image

. G ti
* Images are constructed using the
packages built earlier in the process

» Uses for these images: images

 Live Image to boot a device

* Root filesystem for QEMU emulator
« Sysroot for App development

YP lets you customize your embedded Linux OS
YOCLO - [Jtinux

PROJECT

ADT Generation

Package Feeds

SDK
« Cross toolchain and installation script
generated.

Application

« This can be used to set up an application Development

SDK

developer’'s cross development
environment to create apps

* MACHINE=gemuarm bitbake poky-
image-sato-sdk meta-toolchain
package-index

QEMU built for target architecture
emulation

yocto -

PROJECT

oJ
o
C -
z

o
=Q
(o]

z

Settlng up the App Developer

Openembedded Architecture Workflow

SSSSSS
tchi

atch package [[TSISEEREEN mage
i deb
nnnnnnnnn
package
elationships

anfiguratio

nnnnnnnnnn
aaaaa

App Developer

Yocto plug-ins

YP helps set up the embedded app developer

More info: bit.ly/mz6uRv & bit.ly/j551Q3 yocto - rliinux

NNNNNNN
OOOOOOOOOO

Use NFS/Local Disk, Pkg Manager

Openembedded Architecture Workflow

Upstream Source Output Packages
Metadata/Inputs Process steps (tasks)
Build system . Qutput Image Data

App Developer OEMU

Device
emulator

I Device under
development

yocto - [ltinux

PROJECT

Use NFS/Local Disk, Pkg Manager

Openembedded Architecture Workflow

Package
Manager

App Developer OEMU

Device

emulator - ,

Device under
development

Both Device and App Development Models Supported

What's Next?

« Constantly improve the developer's experience

 |dentify areas which are confusing and constantly
Improve them

* Improvements on the Hob

« |solate all Linux development system uncertainties
« Updated kernel, toolchain, user land packages

* More partner’s products

NNNNNNN
OOOOOOOOOO

How to Get Started

Download the software today

Be sure you read the Quick Start to set up your
system to use the Yocto Project

Build, test on QEMU or real hardware, develop
apps
Join the community to get help

« #yocto on freenode and yocto@yoctoproject.org
(http://lists.yoctoproject.org/listinfo/yocto)

Getting started with the Yocto Project is easy

OOOOOOOOOO
PPPPPPP

mailto:yocto@yoctoproject.org
http://lists.yoctoproject.org/listinfo/yocto

Get Involved

* The Yocto Project is a collaboration of
iIndividuals, non-profits, and corporations under
the Linux Foundation

* We urge you or your organization to join

* yoctoproject.org/documentation/getting-started
has a number of ways to learn and contribute

« Contribute code, documentation, fix bugs, provide
BSPs

« Use YP for your embedded projects
« Work with the community to make YP better

Make an impact — collaboration in its purest sense

NNNNNNN
OOOOOOOOOO

It's Time to Take Action

It's not an embedded Linux distribution — it
creates a custom one for you

YP lets you customize your embedded Linux
OS

YP helps set up the embedded app developer

Both device and app development models
supported

Getting started Is easy

Make an impact — collaboration In its purest
sense

OOOOOOOOOO
PPPPPPP

Thanks!

NNNNNNN
OOOOOOOOOO

