
It’s not an embedded Linux distribution –
It creates a custom one for you.

David Stewart
Intel Corporation

October, 2011

Developing Embedded Linux Devices Using the Yocto Project™

Agenda

2/25

 What is the Yocto Project (YP)? … and
what’s new

 How does it work?

 How to get started with building OS,
apps, and debugging

 What’s Next?

 Q&A

What is the Yocto Project? The Story

• Linux is becoming increasingly popular for Embedded

• Non-commercial and commercial embedded Linux has many distros

• Result is:

• Developers spend lots of time porting or making build systems

• Leaves less time/money to develop interesting software features

• The industry needs a common build system and core technology

• Industry leaders have joined together to form the Yocto Project

• The benefit of doing so is:

• Less time spent on things which don’t add value (build system, core Linux
components)

• Linux grows more in embedded

3

What is the Yocto Project?

• Distribution build environment and tools for embedded

• Supports ARM, PPC, MIPS, x86 (32 & 64 bit)

• Open source project with a strong community

• Content

• Complete Linux OS with package metadata

• Releases every 6 months with latest (but stable) kernel,
toolchain, and package versions

• Place for Industry to publish BSPs

• App Dev Tools which allow development against the stack,
including Eclipse plug-ins and emulators

• Full documentation representative of a consistent system

 It’s not an embedded Linux distribution – it creates a custom one for you

Why Should a Developer Care?
• Build a complete Linux system in about an hour from sources

(about 90 minutes with X).

• Start with a validated collection of packages (toolchain, kernel,
user space).

• Access to a great collection of app developer tools
(performance, debug, power analysis, Eclipse). We distinguish
app developers system developers and we support both.

• Manage patches with included kernel development tools.

• Supports all major embedded architectures (x86, x86-64, ARM,
PPC, MIPS), just change a line in a config file and rebuild.

• Easy path to a commercial embedded Linux (Mentor Graphics,
Montavista, Timesys, Wind River).

What’s new in Yocto v1.1

• Hob – graphical interface for selecting options
and packages and doing a build

• Multilib –

• mix and match 32 and 64 bit binaries on the target

• Pick the architecture on a per package basis

• https://wiki.yoctoproject.org/wiki/Multilib for more

• Initial x32 support –

• X86-64 systems running 64 bit registers and 32 bit
data types – see meta-x32 repository

• System builder tasks now in Eclipse

https://wiki.yoctoproject.org/wiki/Multilib
https://wiki.yoctoproject.org/wiki/Multilib

How Does It Work? – Quick Start

1. Go to http://yoctoproject.org, click “documentation”
and consult the Quick Start guide

2. Set up your Linux system with the right packages (and
firewall access, if needed)

3. Click “Download” and download the latest stable
release (or check out “bernard” from the git repo)

4. Edit conf/local.conf and set MACHINE,
BB_NUMBER_THREADS and PARALLEL_MAKE

5. Source oe-init-build-env script

6. Run $ bitbake –k core-image-sato

7. Run $ runqemu qemux86 (if MACHINE=qemux86)

Note: File or command names in this presentation are
subject to change, several are different now in master.

http://yoctoproject.org/

YP = Poky + Upstreams + Tools

YP provides best of upstream for a stable base

Upstream
Software
Projects

Poky

OpenEmbedded-Core

Bitbake

Yocto Documentation

Meta-Yocto

Reference BSP
Metadata (one per arch)

Embedded Kernel Tools

Reference Images

Build system upstream

components

Poky

Yocto Project

components

Yocto Project

Yocto Project Output

Prebuilt Build State

Software Releases

ADT Components

Swabber

Pseudo

ADT Tools (Eclipse
Plugin)

How Does It Work? More Depth

More info: http://bit.ly/it9rkB

Look here for links to slides and video tutorials!

How Does it Work? Configuration

• Configuration (*.conf) – global definition
of variables

• build/conf/local.conf (local user-defined variables)

• distro/poky.conf (Yocto policy config variables)

• machine/routerstationpro.conf (machine-specific
variables)

How Does It Work? Configuration

• User configuration:

• conf/local.conf – some things to set:

• Set BB_NUMBER_THREADS and PARALLEL_MAKE,
based on the number of threads in the machine

• Set MACHINE=“foo” for the CPU architecture

• EXTRA_IMAGE_FEATURES adds features (groups of
packages)

• INCOMPATIBLE_LICENSE = “GPLv3” eliminates
packages using this license (for example)

How Does It Work? Metadata

• Metadata and patches:

• Recipes for building packages

• Eg, meta/recipes-
core/coreutils/coreutils_6.9.bb builds the core
utilities (version 6.9) and installs them

• meta-recipes-core/coreutils/coreutils-6.9/

includes patches, also could include extra files to
install

How Does It Work? Layers

BSP “Layers”
• Layers contain extensions and customizations to base system

• Can include image customizations, additional recipes,
modifying recipes, adding extra configuration

• Really just another directory to look for recipes in

• Added to the BBLAYERS variable in build/conf/bblayers.conf

• BSPs are layers that add machine settings and recipes

• Machine settings are specified in a layer's
conf/machine/xxx.conf file(s)

• Examples:

• Sandy Bridge + Cougar Point:

• meta-intel/conf/meta-sugarbay/machine/sugarbay.conf

• Routerstation Pro (MIPS)

• yocto/meta/conf/machine/routerstationpro.conf

More info: bit.ly/lWaszt & bit.ly/m8nirP

Kernel Development

• We try to develop upstream wherever possible

• Two major advances in the Yocto Project:

• Branching tools: Per-BSP git branches contain
machine-specific kernel sources. Tools collect up
the relevant tree of branches

• Kernel features: patches and configuration
fragments managed as a functional block

• Results:

• Can turn on a collection of features for a given BSP

• Less code duplication

• Easier to choose a config fragment and patches

More info: bit.ly/iZUkvk & bit.ly/jRSfwO

Kernel Tools Details

• Components

• Kernel class

• meta/classes/kernel.bbclass

• Linux-Yocto recipe

• meta/recipes-kernel/linux/linux-yocto*bb

• Linux-Yocto git repository

• http://git.pokylinux.org/cgit/cgit.cgi/linux-yocto-2.6.37

• Kernel Versions

• linux-yocto-stable: 2.6.34

• linux-yocto: 2.6.37

• linux-yocto-dev: 2.6.39 (meta-kernel-dev) (soon 3.0)

• linux-2.6: current mainline git (meta-kernel-dev)

Source Fetching

• Recipes call out location of all sources, whether on the internet
or local (Look for SRC_URI in *.bb files)

• Bitbake can get sources from git, svn, bzr, from tarballs, and
many, many more*

• Versions of packages can be fixed or updated automatically
(Add SRCREV_pn- PN = "${AUTOREV}” to local.conf)

• Yocto Project sources mirror available as a fallback, if the
sources move on the internet

* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc,
repo, ssh, and svk and the unpacker can cope with tarballs, zip, rar, xz, gz, bz2,
and so on.

Patching

• Once sources are obtained, the patches are applied

• This is a good place place to patch the software yourself

• However, we encourage you to contribute development
upstream whenever possible (we try to)

Configure/Compile

• Autoconf can be triggered automatically to ensure latest libtool is used

DESCRIPTION = "GNU Helloworld application“

SECTION = "examples"

LICENSE = "GPLv2+"

LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"

PR = "r0"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

• CFLAGS can be set

CFLAGS_prepend = "-I ${S}/include "

• Install task to set modes, permissions, target directories, done by “pseudo”

do_install () {

 oe_runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=${mandir}

Packaging

• Once configure/compile/install is completed,
packaging commences

• The most popular package formats are
supported: RPM, Debian, and ipk

• Set PACKAGE_CLASSES in conf/local.conf

• You can split into multiple packages using
PACKAGES and FILES in a *.bb file:
PACKAGES =+ "sxpm cxpm"

FILES_cxpm = "${bindir}/cxpm"

FILES_sxpm = "${bindir}/sxpm"

Image Generation

• Images are constructed using the
packages built earlier in the process

• Uses for these images:

• Live Image to boot a device

• Root filesystem for QEMU emulator

• Sysroot for App development

YP lets you customize your embedded Linux OS

ADT Generation

• Cross toolchain and installation script
generated.

• This can be used to set up an application
developer’s cross development
environment to create apps

• MACHINE=qemuarm bitbake poky-

image-sato-sdk meta-toolchain

package-index

• QEMU built for target architecture
emulation

Setting up the App Developer

System Developer

App Developer

Sysroot
(Bootable Linux

filesystem tree with
development

headers)

Package
Repository

(networked or
local)

Cross toolchain
installation

(such as: /opt/poky)

YP helps set up the embedded app developer

Yocto plug-ins

More info: bit.ly/mz6uRv & bit.ly/j55IQ3

Use NFS/Local Disk, Pkg Manager

System Developer

App Developer

Package
Repository

QEMU
Device

emulator

Device under
development

Sysroot

Use NFS/Local Disk, Pkg Manager

System Developer

App Developer

Sysroot

Package
Repository

QEMU
Device

emulator

Device under
development

Both Device and App Development Models Supported

Package
Manager

What’s Next?

• Constantly improve the developer’s experience

• Identify areas which are confusing and constantly
improve them

• Improvements on the Hob

• Isolate all Linux development system uncertainties

• Updated kernel, toolchain, user land packages

• More partner’s products

How to Get Started

• Download the software today

• Be sure you read the Quick Start to set up your
system to use the Yocto Project

• Build, test on QEMU or real hardware, develop
apps

• Join the community to get help

• #yocto on freenode and yocto@yoctoproject.org
(http://lists.yoctoproject.org/listinfo/yocto)

Getting started with the Yocto Project is easy

mailto:yocto@yoctoproject.org
http://lists.yoctoproject.org/listinfo/yocto

Get Involved

• The Yocto Project is a collaboration of
individuals, non-profits, and corporations under
the Linux Foundation

• We urge you or your organization to join

• yoctoproject.org/documentation/getting-started
has a number of ways to learn and contribute

• Contribute code, documentation, fix bugs, provide
BSPs

• Use YP for your embedded projects

• Work with the community to make YP better

 Make an impact – collaboration in its purest sense

It’s Time to Take Action

• It’s not an embedded Linux distribution – it
creates a custom one for you

• YP lets you customize your embedded Linux
OS

• YP helps set up the embedded app developer

• Both device and app development models
supported

• Getting started is easy

• Make an impact – collaboration in its purest
sense

Q & A

Thanks!

31/25

