
Meeting the Yocto Project
In this chapter, we will be introduced to the Yocto Project. The main concepts of the
project, which are constantly used throughout the book, are discussed here. We will
discuss the Yocto Project history, OpenEmbedded, Poky, BitBake, and Metadata in
brief, so fasten your seat belt and welcome aboard!

What is the Yocto Project?
The Yocto Project is a �������	��
���	��	����	���
����
����

"The Yocto Project provides open source, high-quality infrastructure and tools
to help developers create their own custom Linux distributions for any hardware
architecture, across multiple market segments. The Yocto Project is intended to
provide a helpful starting point for developers."

The Yocto Project is an open source collaboration project that provides templates,
tools, and methods to help us create custom Linux-based systems for embedded
products regardless of the hardware architecture. Being managed by a Linux
Foundation fellow, the project remains independent of its member organizations that
participate in various ways and provide resources to the project.

It was founded in 2010 as a collaboration of many hardware manufacturers, open
source operating systems, vendors, and electronics companies in an effort to reduce
their work duplication, providing resources and information catering to both new
and experienced users.

Among these resources is OpenEmbedded-Core, the core system component,
provided by the OpenEmbedded project.

Meeting the Yocto Project

[8]

The Yocto Project is, therefore, a community open source project that aggregates
several companies, communities, projects, and tools, gathering people with the same
purpose to build a Linux-based embedded product; all these components are in the
same boat, being driven by its community needs to work together.

Delineating the Yocto Project
To ease our understanding of the duties and outcomes provided by the Yocto Project,
we can use the analogy of a computing machine. The input is a set of data that

�����������������������������	�������������	���������	������������������
�����
�
Linux-based embedded product.

If the output is a product running a Linux-based operating system, the result
generated is the pieces that compose the operating system, such as the Linux kernel,
�		��	�
������
������		������������"rootfs) bundle, which are properly organized.

To produce the resultant rootfs bundle and other deliverables, the Yocto Project's
tools are present in all intermediary steps. The reuse of previously built utilities
and other software components are maximized while building other applications,
libraries, and any other software components in the right order and with the

�����
��	��������	��������
��������#��������	#�������$����
��	������	
��#�	��
their respective repositories such as The Linux Kernel Archives (www.kernel.org),
GitHub, and www.SourceForge.net.

Preparing its own build environment, utilities, and toolchain, the amount of host
software dependency is reduced, but a more important implication is that the

���������������	���
���������������
��%�������������������	������
��	��������	��
options are the same, minimizing the number of host utilities to rely on.

We can list some projects, such as Poky, BitBake, and OpenEmbedded-Core, under
����&	��	�*�	+������������������	#�������������	��������������
�����������������
roles in the system. We will understand exactly how they work together in this
chapter and throughout the book.

Understanding Poky
Poky is the Yocto Project reference system and is composed of a collection of tools
and metadata. It is platform-independent and performs cross-compiling, using the
BitBake tool, OpenEmbedded Core, and a default set of metadata, as shown in the
#	��	�����������/����	��
������������������	�����
���
��	��������	����
��	#�
distributed open source projects to form a fully customizable, complete, and coherent
Linux software stack.

Chapter 1

[9]

Poky's main objective is to provide all the features an embedded developer needs.

Yocto-specific Metadata (meta-yocto)

Yocto-specific BSP (meta-yocto-bsp)

OpenEmbedded-Core (meta)

BitBake Tool (bitbake)

Poky Build Tool

��������	�
��
BitBake is a task scheduler that parses Python and Shell Script mixed code. The code
parsed generates and runs tasks, which are basically a set of steps ordered according
to the code's dependencies.

/���������������������������	��������	���������
������� data (known as metadata),
managing dynamic variable expansion, dependencies, and code generation. It keeps
track of all tasks being processed in order to ensure completion, maximizing the use
of processing resources to reduce build time and being predictable. The development
of BitBake is centralized in the bitbake-devel@lists.openembedded.org mailing
list, and its code can be found in the bitbake subdirectory of Poky.

����������������
The OpenEmbedded-Core metadata collection provides the engine of the Poky build
tool. It is designed to provide the core features and needs to be as clean as possible.
/����	��
�������	���#	������
�##��������	����	����������������"ARM, x86, x86-64,
PowerPC, MIPS and MIPS64), supporting only QEMU-emulated machines.

The development is centralized in the openembedded-core@lists.openembedded.
org mailing list, and houses its metadata inside the meta subdirectory of Poky.

Meeting the Yocto Project

[10]

Metadata
The metadata, which�����	��	��
�	#�������	#�*���	����
�3�����3�����������������
��	��
�����������
	�����4���������������*	��������������	������
�5���6���

�
7
Core and includes two different layers, which are another metadata subset shown
as follows:

8� meta-yocto: This layer provides the default and supported distributions,
visual branding, and metadata tracking information (maintainers, upstream
status, and so on)

8� meta-yocto-bsp: This layer, on top of it, provides the hardware reference
boards support for use in Poky

Chapter 7, Diving into BitBake Metadata, explores the metadata in more detail and
serves as a reference when we write our own recipes.

The alliance of OpenEmbedded Project
and Yocto Project
The OpenEmbedded project was created around January 2003 when some core
developers from the OpenZaurus project started to work with the new build system.
The OpenEmbedded build system has been, since its beginning, a tasks scheduler
inspired and based on the Gentoo Portage package system named BitBake. The project
has grown its software collection, and a number of supported machines at a fast pace.

����	���$������	#����		�
�����
�
����	�������������
�#�������	�����5���6���

�
�
in products that demand a more stable and polished code base, which is why Poky
was born. Poky started as a subset of OpenEmbedded and had a more polished
and stable code base across a limited set of architectures. This reduced size allowed
Poky to start to develop highlighting technologies, such as IDE plugins and QEMU
integration, which are still being used today.

Around November 2010, the Yocto Project was announced by the Linux Foundation
to continue this work under a Linux Foundation-sponsored project. The Yocto
Project and OpenEmbedded Project consolidated their efforts on a core build system
called OpenEmbedded-Core, using the best of both Poky and OpenEmbedded,
emphasizing an increased use of additional components, metadata, and subsets.

Chapter 1

[11]

Summary
%�������������������	��
�
����	�������	���	�����5���6���

�
�*�	+�������
related to the Yocto Project, the components which form Poky, and how it was
������
��/���������������������������������	
���
��	�����*	���	��4	�����������
�	�
	��	�
���	����������
�������������*	�������
������	���������
��	��	������
����������������������������
���������������<6=>�

Baking Our
Poky-based System

In this chapter, we will understand the basic concepts involved in the Poky
	��4	�����?������	������
��
����������������	�
	��	�
���
��	����������������
the Poky build environment, and bake something usable. The steps covered here are
commonly used for testing and development. They give us the whole experience of
using Poky and a taste of its capabilities.

�����������
����	����	��
The process needed to set up our host system depends on the distribution we run on
it. Poky has a set of supported Linux distributions, and if we are new to embedded
Linux development, it is advisable to use one of the supported Linux distributions
to avoid wasting time debugging build issues related to the host system support.
Currently, the supported distributions are the following:

8� Ubuntu 12.04 (LTS)
8� Ubuntu 13.10
8� Ubuntu 14.04 (LTS)
8� Fedora release 19 (Schrödinger's Cat)
8� Fedora release 20 (Heisenbug)
8� CentOS release 6.4
8� CentOS release 6.5
8� Debian GNU/Linux 7.x (Wheezy)
8� openSUSE 12.2

Baking Our Poky-based System

[14]

8� openSUSE 12.3
8� openSUSE 13.1

If our preferred distribution is not in the preceding list, it doesn't mean it is not
possible to use Poky on it. However, it is unknown whether it will work, and we
may get unexpected results.

The packages that need to be installed into the host system vary from one
distribution to another. Throughout�������		����	����
����������	���#	��Debian and
Fedora, our ���#����
�
���������	����&	��������
��������������	���#	����������	���
�
distributions in the Yocto Project Reference Manual.

Installing Poky on Debian
To install the needed packages for a headless host system, run the following command:

$: sudo apt-get install gawk wget git-core diffstat unzip texinfo
build-essential chrpath

If our host system has graphics support, run the following command:

$: sudo apt-get install libsdl1.2-dev xterm

The preceding commands are also compatible with the Ubuntu distributions.

Installing Poky on Fedora
To install the needed packages for a headless host system, run the following
command:

$: sudo yum install gawk make wget tar bzip2 gzip python unzip perl
patch diffutils diffstat git cpp gcc gcc-c++ eglibc-devel texinfo
chrpath ccache

If our host system has graphics support, run the following command:

$: sudo yum install SDL-devel xterm

Downloading the Poky source code
After we install the needed packages into our development host system, we
need to get the Poky source code that can be downloaded with Git, using the
following command:

$: git clone git://git.yoctoproject.org/poky --branch daisy

Chapter 2

[15]

Learn more about Git at http://git-scm.com.

After the download process is complete, we should have the following contents
inside the poky directory:

The examples and code presented in this and the next
chapters use the Yocto Project Version 1.6 and Poky Version
11.0. The code name is Daisy, as reference.

Preparing the build environment
Inside the poky directory, there is a script named oe-init-build-env, which should
be used to set up the build environment. The script must be run as shown:

$: source poky/oe-init-build-env [build-directory]

Here, build-directory is an optional parameter for the name of the directory
where the environment is set; in case it is not given, it defaults to build. The
build-directory is the place where we perform the builds.

It is very convenient to use different build directories. We can work on distinct
projects in parallel or different experimental setups without affecting our
other builds.

Baking Our Poky-based System

[����]

Throughout the book, we will use build as the build directory. When
we need to��	�����	�����������
����������
�
�����	�����������
	�������
same convention, for example, build/conf/local.conf.

��������	�����!
�"!��#����
]��������������^��������
������	�����������������������������
�build/conf/local.
conf�������������	��#����		������������	����������	����������������	#���������
�
process. We can set the machine we are building for, choose the toolchain host
architecture to be used for a custom cross-toolchain, optimize options for maximum
build time reduction, and so on. The comments inside the build/conf/local.conf
����������������		
�
	���������	����
���#�������	#��	��������������������
�������
defaults. The minimal set of variables we probably want to change from the default
is the following:

BB_NUMBER_THREADS ?= "${@oe.utils.cpu_count()}"
PARALLEL_MAKE ?= "-j ${@oe.utils.cpu_count()}"
MACHINE ??= "qemux86"

BB_NUMBER_THREADS and PARALLEL_MAKE should be set to
twice the host processor's number of cores.

The MACHINE variable is where we determine the target machine we wish to build
for. At the time of writing this book, Poky supports the following machines in its
reference Board Support Package (BSP):

8� beaglebone: This is BeagleBone
8� genericx86: This is a generic support for 32-bit x86-based machines
8� genericx86-64: This is a generic support for 64-bit x86-based machines
8� mpc8315e-rdb: This is a freescale MPC8315 PowerPC reference platform
8� edgerouter: This is Edgerouter Lite

The machines are made available by a layer called meta-yocto-bsp. Besides these
machines, OpenEmbedded-Core also provides support for the following:

8� qemuarm: This is the QEMU ARM emulation
8� qemumips: This is the QEMU MIPS emulation
8� qemumips64: This is the QEMU MIPS64 emulation
8� qemuppc: This is the QEMU PowerPC emulation

Chapter 2

[17]

8� qemux86-64: This is the QEMU x86-64 emulation
8� qemux86: This is the QEMU x86 emulation

Other machines are supported through extra BSP layers and these are available from
a number of vendors. The process of using an extra BSP layer is shown in Chapter 10,
Exploring External Layers.

The local.conf����������������	�������������	�	�����
����������

�#������	��������	���	������������&	��	�*�	+���?���		����6��������������
can change or set any variable, for example, add additional packages to
�������������
Though it is convenient, it should be considered as a temporary change
as the build/conf/local.conf���������	����������������
��������
source code management system.

���������
�	
���	���
��
Poky provides several predesigned image recipes that we can use to build our
own binary image. We can check the list of available images running the following
command from the poky directory:

$: ls meta*/recipes*/images/*.bb

All the recipes provide images which are, in essence, a set of unpacked and
�	������
���	���������������
����

Next, we can see a short description of available images, as follows:

8� build-appliance-image: This is a virtual machine image which can be run
by either VMware Player or VMware Workstation that allows to run builds.

8� core-image-full-cmdline: This is a console-only image with full support
for the target device hardware.

8� core-image-minimal: This is a small image allowing a device to boot, and it
is very useful for kernel and boot loader tests and development.

8� core-image-minimal-dev: This image includes all contents of the core-
image-minimal image and adds headers and libraries that we can use in a
host development environment.

8� core-image-minimal-initramfs: This core-image-minimal image is used
for minimal RAM-based initial �		������������"initramfs) and as a part of
the kernel.

Baking Our Poky-based System

[18]

8� core-image-minimal-mtdutils: This is a core-image-minimal image that
has support for the MTD utilities�#	����������4����
�������

8� core-image-full-cmdline: This is a console-only image with more full-
featured Linux system functionalities installed.

8� core-image-lsb: This is an image that conforms to the Linux Standard Base
(LSBq�����������	��

8� core-image-lsb-dev: This is a core-image-lsb image that is suitable for
development work using the host, since it includes headers and libraries that
we can use in a host development environment.

8� core-image-lsb-sdk: This is a core-image-lsb image that includes a
complete standalone SDK. This image is suitable for development using the
target.

8� core-image-clutter: This is an image with clutter support that enables
development of rich and animated graphical user interfaces.

8� core-image-directfb: This is an image that uses DirectFB instead of X11.
8� core-image-weston: This is an image that provides the Wayland protocol

libraries and the reference Weston compositor.
8� core-image-x11: This is a very basic X11 image with a terminal.
8� qt4e-demo-image: This is an image that launches into the Qt Demo

application for the embedded (not based on X11) version of Qt.
8� core-image-rt: This is a core-image-minimal image plus a real-time test

suite and tool appropriate for real-time use.
8� core-image-rt-sdk: This is a core-image-rt image that includes a

complete standalone SDK and is suitable for development using the target.
8� core-image-sato: This is an image with Sato support and a mobile

environment for mobile devices that use X11; it provides applications such as
�������������
��	������������������
�������������
��	�#	����

8� core-image-sato-dev: This is a core-image-sato image that includes
libraries needed to build applications on the device itself, testing and
��	�������		�����
�
�������������	���

8� core-image-sato-sdk: This is a core-image-sato image that includes a
complete standalone SDK and is suitable for development using the target.

8� core-image-multilib-example: This is an example image that includes a
lib32 version of Bash, otherwise it is a standard Sato image.

Chapter 2

[19]

The up-to-date image list can be seen in the Yocto Project Reference Manual.

The process of building an image for a target is very simple. We must run the
following command:

$: bitbake <recipe name>

For example, to build core-image-full-cmdline, run the following command:

$: bitbake core-image-full-cmdline

We will use MACHINE = "qemuarm" in the following examples. It
should be set in build/conf/local.conf accordingly.

Running images in QEMU
As many projects have a small portion that is hardware dependent, the hardware
emulation comes to speed up the development process by enabling sample to run
without involving an actual hardware.

Quick EMUlator (QEMU) is a free and open source software package that performs
hardware virtualization. The QEMU-based machines allow test and development
without real hardware. Currently, the ARM, MIPS, MIPS64, PowerPC, and x86 and
x86-64 emulations are supported.

The runqemu script enables and makes the use of QEMU with the OpenEmbedded-
Core supported machines easier. The way to run the script is as follows:

$: runqemu <machine> <zimage> <filesystems>

Here, <machine> is the machine/architecture to be used as qemuarm, qemumips,
qemuppc, qemux86, or qemux86-64. Also, <zimage> is the path to a kernel (for
example, zimage-qemuarm.bin). Finally,<filesystem> is the path to an ext3 image
(for example, filesystem-qemuarm.ext3) or an NFS directory.

Baking Our Poky-based System

[20]

So, for example, in case we run runqemu qemuarm core-image-full-cmdline, we
can see something as shown in the following screenshot:

We can log in with the root account using an empty password. The system behaves
as a regular system even being used inside the QEMU. The process to deploy an
image in a real hardware varies depending on the type of storage used, bootloader,
and so on. However, the process to generate the image is the same. We explore how
to build and run an image in the Wandboard machine in Chapter 14, Booting Our
Custom Embedded Linux.

Summary
/������������������������
��������������
�
��	��������*	�����
�����	��������������
built. We ran that image using runqemu, which gave us a good overview of the
available capabilities.

In the next chapter, we will be introduced to Hob, which provides a human friendly
interface for BitBake, and we will use it to build an image and customize it further.

Using Hob to Bake an Image
Hob is a human friendly interface for BitBake. It helps us customize images and have
them the way we want. It also enables us to run the image on QEMU after bitbaking
it. It is just like a bakery display; we can pick what we want and use it right away.

���������
����
���������$��
Our���������������	��������	�������
������	����������#	��	��

$: source poky/oe-init-build-env [build-directory]

We can choose an old build directory or create a new one.

Now, Hob is ready for use. To start it, we should run the following:

$: hob

������������|	�����#	�����	���������������������
���������	�����	��������	��
and available metadata layers. After a short time, Hob proposes a list of available
machines. We can select, for example, qemuarm.

Once the dependency tree is built, select the desired image, for example, core-
image-full-cmdline.

Using Hob to Bake an Image

[22]

The following screenshot shows the MACHINE variable content and the image to be
built in the Hob interface:

With the target MACHINE and image selected, the next step is to choose some
�
�����
��	��������	�����������������������"#	�����������cpio.gz, ext2.bz2,
ext3.gz, jffs2, ubifs, and vmdk) or package formats (rpm, deb, IPK, or TAR). We
can also exclude all packages under the GPLv3 licensing, as shown in Chapter 13,
Achieving GPL Compliance.

From the upper-right hand corner of the window, we can access the two areas
Images and Settings. Images offers access to the built images (from the past),
and Settings performs changes to MACHINE, parallelization, distribution, shared
folders, and BBLAYERS��|	���	
���������build/conf directory contents inside our
����
�
�����	����]����������|	��	��	��������
���	������
�����
�#	�
������
�����
�	��������	���������4����
�	��|	���/�����������������#�������	������	���������

/#�������	�������	��	����������������
������	������#	���������������
��	�����
attention to the variables DL_DIR and SSTATE_DIR, which are detailed in Chapter 4,
Grasping the BitBake Tool, and Chapter 6, Assimilating Packaging Support.

Chapter 3

[�%&�]

If we plan to build a standard image, we can click on Build Image and wait for
BitBake to run the required tasks to build it. Otherwise, if we want to change the
recipe set of an image, we can click on Edit image recipe.

���	���'����
����
�����	��$��
The following screenshot shows the list of included recipes in the Hob interface:

We can add or remove recipes (there is a search box in the upper-right hand corner)
by selecting or deselecting them. If we click on the recipe name, we can see details
such as its version and license.

Using Hob to Bake an Image

[24]

From the tabs, we can see the number of selected packages, the list of available
packages, and how the selected packages are grouped, as shown in the
following screenshot:

After clicking on Build packages and waiting for them to be built, we have a second
chance to see the list of selected packages, to know the value of the Estimated image
size, and to decide to remove some application in order to generate a smaller image.
~�����������	�����������������������������
�
������#�	������������������������
��/#���
package is highlighted, its log can be displayed by clicking on Open log.

BitBake resolves all dependencies from the selected packages, including any needed
additional package.

We can wrap the image by clicking on Build image and waiting until our image is
ready, as shown in the following screenshot:

Chapter 3

[25]

We ����������	������
���������	��������	�����
�������selected packages, view logs,
	�����������������5���#	�����������
��#	������<6=>7����
�����������������������	��
Run image and see our image being run inside the QEMU emulator, and the Yocto
Project logo, as shown in the next screenshot:

Using Hob to Bake an Image

[�%��]

Hob is a nice tool for image adjustments and addition of few packages on existing
images. It is a great user-friendly interface for simple tasks and may be useful for
�������	����������	������	
������	�������������������

Hob is in the process of being replaced by a new tool called Toaster.
At the time of writing this book, Toaster is under heavy development,
and it is still feature incomplete. However, the next Yocto Project
release will supersede Hob, according to the Toaster planned feature
set. So, it is advised to research for Toaster in the Yocto Project
documentation website for more updated information.

Summary
/������������������������
���	�������
�##������|	��#�����	�����������
��	����������
variables. We learned how Hob can be used to easily make changes by teams and
how it takes advantage of a user-friendly user interface for simple tasks.

In the next chapter, we will understand how BitBake does its magic. We will grasp
the parsing, preferences and providers support, dependencies, task handling, and
main task functions.

